Millimetron & CMB spectral distortions

Joseph Silk

IAP/JHU/BIPAC Oxford

What next?

Gravitational lensing: polarization E & B modes

Temperature fluctuations: scalar mode

PLANCK: 32 detectors

Gravity waves: polarization B mode

B

Satellite: LiteBIRD (JAXA launch in 2027?)

Goal: r ~ 0.001

CMB S4: 500,000 Detectors – 140 TB/day

But so far there is no guarantee of a signal!

Something different

CMB spectral distortions

Probes early energy input into the universe

Ultimate goal: recombination of the universe

Its all about sensitivity

• Need to improve on FIRAS by 5 orders of magnitude

• But that was in 1980

Spectral distortions: new frontier

Probing primordial energy input

 μ distortion is our best hope: over z= 5.10^4 to 2.10^6

- z> 2.10⁶: bremsstrahlung +double Compton creates blackbody photons
- μ =1.4 δ E_{injection} due to Compton scattering
- adds energy, conserving photon number, over $2.10^6 > z > 5.10^4$: μ
- 5.10⁴ > z: Thompson transfers energy : y spectral distortion

- Many papers on this: eg, decaying particles, primordial black holes...
- No guaranteed signal of exotica

Guaranteed returns to fundamental cosmology

- 1. Damping of dwarf galaxy fluctuations
 k_D=4z₄^{3/2} Mpc⁻¹ probes 50-10⁴ Mpc⁻¹
- 2. (re)combination spectral lines of hydrogen 380000 yrs after the Big Bang
- 3. (re)combination spectral lines of helium 200000 yrs after the Big Bang long before the first stars

Hydrogen recombination lines We measure atomic hydrogen directly to z ~8

+ 21 cm maybe to z^{17}

Going for primordial helium

Sensitivity needed for a guaranteed signal

The µ goal

probe baryon damping power on dwarf galaxy scales via trillions of modes

Advantages of space

y predictions

planning for a CMB spectral distortion mission

Fourier transform spectrometer

sensitivity needed compared to PIXIE

 μ ~10⁻⁹ achievable with ~ 10 detectors + 10m telescope

another approach that would do complementary science

Target for MILLIMETRON

Foregrounds from galaxies & IGM

The big picture

Opening up a new epoch for cosmological exploration

