

The Millimetron antenna

<u>E. Golubev</u> on behalf of the Millimetron team

Millimetron Workshop 2019: Capabilities and Science Objective of Millimetron Space Observatory, 9-11 September 2019, Observatoire de Paris / LERMA, Paris

Design of the Millimetron Antenna

Stowed Configuration of the Primary Mirror

3

The Secondary Mirror

Deployment Strategy

□ required deployment accuracy ≤ 1 mm (PV)

Deployment Mechanism

Millimetron antenna / Error budget

Telescope		6 μm (RMS)		
1	Primary mirror	5,8		
1.1	Panels	3,6		
1.2	Assembly*	0,3		
1.3	Deployment*	0,7		
1.4	Thermal and moisture distortions of framework* 2,8			
1.5	1g offload* 0,8			
1.6	Panel distortions due to adaptation	0,2		
1.7	Panel curvature correction**	2,2		
1.8	Adaptation	0,5		
1.9	Alignment	1,0		
1.10	Non-static image quality	0,2		
Total		5,3		
Margin		0,5		
2	Secondary mirror			
2.1	Manufacturing	1,0		
2.2	Thermal distortions	0,8		
2.3	Alignment	1,0		
2.4	Non-static image quality	0,2		
	Total	1,6		

Risks mitigation in the Primary Mirror development

Technical challenges	Critical items	Development steps
10-m aperture deployable	Accurate and reliable deployment	 Verification of petals and brace struts deployment accuracy; Development of the zero-gravity system
space mirror	Mechanical performance under the launch loads	 Verification of the latching systems; Vibration testing in the launch configuration;
	High-precision lightweight panels from CFRP	 Validation of the replica technique accuracy and repeatability;
SFE ≤ 9.8 μm RMS (goal 5.8 μm) at <i>T</i> up to 4.5K	Thermal dimensional stability of PM structures	 The measurement of thermal distortions of a panel and a petal framework in cryovacuum conditions;
	Panels position and curvature adjustment	 Mock-up for a panel adaptation via 3 "tip&tilt" actuators; Mock-up for a panel curvature correction via a center self-contained actuator.

Primary Mirror mock-up at November 11, 2016

Development and testing of full-scale Primary Mirror mock-up

Phases of the test program:

- 1. Verification of deployment system performances in terms deployment accuracy and repeatability;
- 2. Development and verification of a zero-gravity system;
- 3. Verification of the latching system of petals in operational and folded positions;
- 4. Verification of deployment system of brace struts;
- 5. Vibration testing in the stowed configuration.

Vibration testing in the stowed configuration

Foto PM mock-up on a shaker

FEM of mock-up

✓ No structural degradation and visible damage after test;

✓ No unexplained frequency shifts more than 5% between pre and post test;

✓ Latching system of PM for the stowed configuration verified.

Thermal distortions measurement of petal framework

Petal framework in a thermal vacuum chamber (Max thermal gradient <10°C)

Measured distortions at $t = -140 \degree C$

Measured distortions at $t = +140 \degree C$

✓ Max measured distortions ≤ 0.4 mm (PV)

Panels position and curvature adjustment

Deployment error alignment

 $A_{\epsilon} = \pm 1 \text{ mm}^*$

*Errors are caused by deviation in the turning angle of a petal around deployment axis

Residual misalignments

	Panel 2	Panel 3	Panel 4
RMS before adjustment, µm	183	544	923
RMS after adjustment, μm	0.2	0.6	0.9
Actuator movements, µm	34/ 342/ 246	789/ 356/ 634	785/ 979/ 1094

Assembly error alignment

The worst case of assembly error:

Rotation over vertical axis of actuator 1 with $A_{\epsilon} = \pm 100 \ \mu m$

Residual misalignments

	Panel 2	Panel 3	Panel 4
RMS before adjustment, µm	5.6	10.6	20.4
RMS after adjustment, µm	0.2	0.4	0.7
Actuator movements, µm	4/ 34/ 25	79/ 36/ 64	78/ 98/ 109

Mock-up of panel adaptation system

Panel curvature correction system

SFE for panel 4 with $\Delta F = 4$ mm after adjusting by 3 actuators

Residual SFE for panel 4 after curvature correction

RMS = 2.3 μm

Primary Mirror Error Budget

Panel type / external factor	Panel 1 (central)	Panel 2 (internal)	Panel 3 (middle)	Panel 4 (external)	Total, μm (RMS)
Assembly errors*	0,1	0,3	0,5	0,7	0,3
Inaccuracy of deployment and fixation*	0,0	0,2	0,6	0,9	0,3
Thermal and moisture distortions of framework*	1,5	2,9	3,8	5,8	2,8
Panel curvature correction **	2,4	3,0	2,1	2,3	2,2
1g offload*	0,5	1,0	1,0	1,0	0,8
Panel distortions due to adaptation	0,1	0,2	0,5	0,3	0,2
Adaptation	0,5	0,5	0,5	0,5	0,4
Alignment	1,0	1,0	1,0	1,0	0,9
Non-static image quality	0,2	0,2	0,2	0,2	0,2
Panels	3,0	4,4	4,6	4,6	3,6
Total	13,2	11,2	9,6	10,5	5,3

Note:

* residual RMS got after adaptation via 3 "tip&tilt" actuators per panel and SM

** residual RMS got after curvature correction $\Delta F = 4 \text{ mm}$

More details about panel adaptation in the presentation of A. Baryshev "In-flight Surface Error measurement system"

Conclusions

1. Testing of the full-scale mock-up of the primary mirror is finished:

- Achieved deployment accuracy 0.3 mm (PV)
- ✓ Locking systems for operational and stowed configurations have been verified
- ✓ Dynamic performances are acceptable for launch-vehicle
- 2. Thermal dimensional stability of the primary mirror components:
 - ✓ Thermal distortions of the petal framework (cool down to 120K) \leq 0.4 mm (PV)
 - ✓ Thermal distortions of the panel by cooling to 120K not exceeded the 19 μ m (PV) → in next

3. Panels position and curvature adjustment

- ✓ Kinematic scheme of the panel adjustment provides compensations of all misalignment factors and meet error budget requirements
- ✓ Algorithm of panels adjustment validated

 \checkmark Curvature correction on-board system can handle with the focus length deviation in the range of ± 4 mm

More details

presentation

Thank you for your attention

