

Thermal design of the Millimetron payload module

E. Golubev, on behalf of the Millimetron team

Millimetron Workshop 2019: Capabilities and Science Objective of Millimetron Space Observatory, 9-11 September 2019, Observatoire de Paris / LERMA, Paris

Sunshields

Sunshield structure

Cryoshield structure

Development status

Effective Radiation cooling

"Matreshka" design

Preliminary heat flow map (calculated)

Budget of the heat loads on the temperature levels

Level	Radiation Exchange, W	Structure Conduction, W	Cable network Conduction*, W	Heat Dissipation of instruments, W	ΣQ, W
1-2K	-	-	-	0.01	0.01
4K	0.030	0.002	0.018	0.10	0.15
20K	0.489	0.211	0.200	0.50	1.40
100K	1.480	2.940	1.580	10.00	16.00

* 100% margin estimated

What could be implemented up to date?

	Pulse Tube Cooler PT15K (Air Liquide)	2ST - Double stage Stirling cooler (Sumitomo H.I.)	4K-class Joule Thomson cooler (Sumitomo H.I.)	1K-class Joule Thomson cooler (Sumitomo H.I.)	
	Compressor	Compressor	Cold Head →	Compressors (x4) Cold Head →	
TRL	TRL5/6 (planned in 2019)	TRL8	TRL8	TRL5 (life time test is ongoing)	
Cooling power	800mW at 20K 5W at 100K	> 200mW at 20K > 1W at 100K (EOL)	40mW at 4.5K (EOL)	10mW at 1.7K (EOL) 19mW at 1.77K (with PT15K precooling)	
Input power	300 W	80 W at EOL	90 W at EOL	75 W at EOL	
Mass	21 kg	9.5 kg	15 kg	28 kg	
Life time	?	3 years (5yrs as a goal)	> 3 yrs (5yrs as a goal)	>5 yrs	

How it could be realized? Active cooling system

Summary of active cooling system

Cryocooler type	1-2 K (J-T)	4 K (J-T)	15 K (2PT)	20 K (2PT)	100 K (2PT)	Total
Cooling power, W	0,02	0,04	-	0,80	5,00	-
Input power*, W	75	90	300	300	-	2535
Mass, kg	28,0	15,0	35,0	35,0	-	446
Required amount of coolers	1	4	1	6	-	12
Redundant cooler	1	1	1	1	-	4
Total amount	2	5	2	7	-	16

Development status

Conclusions

- The thermal design of the overall payload module and preliminary heat load budget has been developed
- Implementation of 15K PT coolers (Air liquide) and 1K-, 4K-class Joule Thomson coolers (Sumitomo H.I.) is one of the promising way to build the active cooling system
- First validation test with the scale model demonstrated the very critical parts of the thermal design
- Many aspects of the thermal design still need to be studied

Thank you for attention!