Imaging Heterodyne Spectrometer Concept and Science Case using the example of the Heterodyne Receiver for Origins

Presented by M.C. Wiedner

This talk largely uses what we have learned from HERO on Origins

Origins is a NASA study of a large IR satellite submitted to the decadal survey 2020 PI M. Meixner, A. Cooray origins.ipac.caltech.edu https://asd.gsfc.nasa.gov/firs/docs/

HERO is HEterodyne Receiver for Origins

Outline

- Key Science Drivers
- → Modest Imaging Heterodyne spectrometer
- Additional Science Drivers
- → Ambitious Imaging Heterodyne Spectrometer

Key Science Drivers

The Trail of Water (H₂O, H₂¹⁸O, HDO)

FIGURE 2: AGB outflow structure. White boxes: major chemical and physical processes, blu boxes: contribution of existing, planned, and proposed facilities.

- Determining the Cosmic Ray Flux in the Milky Way and in Nearby Galaxies
- Fundamentals of Dust Formation and Evolved Stars

The Trail of Water

Science case developed by E. Bergin, K. Pontoppidan, G. Melnick, M. Gerin, et al.

The Trail of Water

Science case developed by E. Bergin, K. Pontoppidan, G. Melnick, M. Gerin, et al.

Protostars

Protoplanetary disks

Our solar system

Debris disks

To Follows the Trail of water → submm observations

Sensitivity improvements with Origins (5.9 m primary, 4.5 K)

HOW DID WE GET HERE: THE WATER TRAIL

 Water's birth in star-less cores: HERO maps of ground state lines in 10 sources for 300 hours.

Supply to a young disk in protostars: OSS survey of H₂¹⁸O towards 50 sources with HERO followup for 150 hours

Early planet formation in protoplanetary disks: OSS

survey of 1000 sources with HERO followup: 1250 hours

positions for 100 hours

 Supply of life's ingredients to terrestrial worlds: OSS observations of > 100 comets for 200 hours

Measurements of Disk Mass

How was water delivered to Earth?

How was water delivered to Earth?

Water in the Solar System

Water is ubiquitous in our Solar System

Water the dwarf planet Ceres. (Kueppers et al, 2014, Nature).

Water in the Solar System

Water is ubiquitous in our Solar System

Water the dwarf planet Ceres. (Kueppers et al, 2014, Nature).

Key Science Drivers

The Trail of Water (H₂O, H₂¹⁸O, HDO)

- Determining the Cosmic Ray Flux in the Milky Way and in Nearby Galaxies
- Fundamentals of Dust Formation and Evolved Stars

nveiling the Growth of Black Holes and Galaxies over Cosmic Time Origins will reveal the coevolution of super-massive

Cosmic Ray Flux in the Milky Way and Nearby Galaxies

Low-energy cosmic-rays (CR) control the heating, ionization and chemistry of dense molecular clouds. In 100 hours, high-resolution spectroscopy with HERO can determine cosmic ray ionization rate along 40 sight-lines — addressing key questions about the origin and distribution of cosmic rays.

- (1) what is the typical The Cosmic Ray Flux in the Milky Way and Nearby Galaxies as a function of Galactocentric distance?
- (2) how much does the CRIR vary from one molecular cloud to another?
- (3) to what extent are CR excluded from dense molecular clouds?
- (4) what are the sources (e.g. SNR) of low-energy CR?

Herschel/HIFI absoprtion spectra obtained toward an extremely bright continuum source (Neufeld+ 2010)

The Origins Space Telescope:

Maryvonne Gerin, D. Neufeld

Slide by C. Battersby

Dust Formation around Evolved Stars

FIGURE 2: AGB outflow structure. *White boxes:* major chemical and physical processes, *blue boxes:* contribution of existing, planned, and proposed facilities.

From E. de Beck, Astro 2020 White Paper

Evolved Stars

FIGURE 2: AGB outflow structure. *White boxes:* major chemical and physical processes, *blue boxes:* contribution of existing, planned, and proposed facilities.

From E. de Beck, Astro 2020 White Paper

Heterodyne resolution is essential to disentangle the physics and the chemistry!

Slide by E. de Beck

Science Traceability

	Science	e Requirements	Instrument Requirements					
Science Objectives (Wide ranging. We highlight examples.)Science ObservableMeasurement Requirement		Parameter	Technical Requirement	Ins	CBE Performance			
Case #3: Measure the	Measure water (H_2O) content of	Line flux density of ortho	Wavelength range	180µm to 550 µm		111—617 µm		
start in di and planet formation and across the range of stellar masses, tracing water vapor and ice at all temperatures between 10 and	starless cores in diverse environments. High spectral resolution follow up of young disks in proto-stars to determine the distribution of water within the disks	μ m, and other low energy transitions of water and its isotopes to sensitivity limit $1x10^{-20}$ W m ⁻² (3 mK) per 0.3 km s ⁻¹ velocity channel (50) to obtain spectrally resolved line profiles of 10 known	Spectral resolving power $R=\lambda/\Delta\lambda$	$\geq 10^6$ for velocity resolution	ument)	up to 10 ⁷		
			Angular reso- lution	\leq 25" at 538 µm to resolve starless cores	scope Instru	23″ at 538 µm		
			Field of view	1' x 1' to map starless cores		2′ x 2′		
1000 K. (Section B.2; An upscope science case to Theme-2 Objective #1)		Spectral line sensitivity	1x10 ⁻²⁰ W m ⁻² per velocity channel (3 mK), 1 h (5σ)	HE	6x10 ⁻²¹ W m ⁻² per velocity channel at 538 μm, 1 h (5σ)			

Requirements:

180 to 550 microns

- > 10⁶ resolution
- < 25"
- 1' x 1' array
- 1 x 10⁻²⁰ Wm⁻²

HEterodyne Receiver for Origins (Modest Imaging Spectrometer)

Science & Technology Facilities Council Rutherford Appleton Laboratory

Département de Physique École Normale

Supérieure

 \mathbf{ENS}

Centro Astronómico de Yebes Observatorio Astronómico Nacional SPAIN

Max-Planck-Institut für Radioastronomie

Membre fondateur de

Little HERO fact sheet

Col.	2	3	4	5	6	7	8	9	10	11	12	13
Band	vmin	vmax	λmax	λmin	Max Δλ/λ	IF BW2	Mixer	# pixels	Line	Trx	T _{rms} (mK)	Line flux per time
	(GHz)	(GHz)	(µm)	(µm)		km/s	Туре	HERO		K (DSB)	in 1h at $\lambda/\Delta\lambda$ =10 ⁶	W m ⁻² s ^{0.5} , 9m, 5σ
									H ₂ 0, H ₂ ¹⁸ 0,			6.4 E-21
	100	750	647	207	4.07	2005	c i c		HDO		2.6	
1	486	/56	61/	397	10′	3865	SIS	2x9	NH ₃	50	2.6	
									H ₂ 0, H ₂ ¹⁸ 0			1.6 E-20
2	756	1188	397	252	10 ⁷	2469	SIS	2x9	H_3O^+	100	4.2	
									H ₂ 0, H ₂ ¹⁸ 0			4.0 E-20
									H ₃ O ^{+,}			
3	1188	1782	252	168	10 ⁷	1616	HEB	2x 9	$NH_3 N^+$	200	6.8	
4	1782	2700	168	111	10 ⁷	1071	HEB	2x 9	HD , C ⁺	300	8.4	7.3 E-20

Molecular line observations required for water trail theme

12 Receiver noise for 1h integration at 10^6 resolution (0.3 km/s) using one polarization. 13 Detectable point source line flux at 5 sigma, for 1h pointed integration (on+off source) in two polarization₂₃ with a 5.9 m primary mirror (coll area $25m^2$, app eff 0.8) as designed for OST Concept 2.

Heterodyne Focal Plane Array with wide RF

- $R = 10^6 \text{ to } 10^7$
- 486 2700 GHz
- 6 GHz IF (goal 8 GHz)
- 3 x 3 FPA
- 2 polarizations

Satellite Constraints:

- Cooling power
- Power
- Mass, Volume

Mixers

- 3 x 3 x 2 polarizations SIS, 486-1188 GHz, 8 GHz BW
- 3 x 3 x 2 polarizations HEB, 1188 2700 GHz, 8GHz BW

- LO and Sky injected in orthogonal polarizations
- 1 mixer per array, sidband separating – for sideband calibration
- SIS 10mm spacing
- HEB 5mm spacing
- On sky 2FWHM spacing

SiGe Amplifiers – Innovative technology

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 64, NO. 1, JANUARY 2016

Ultra-Low-Power Cryogenic SiGe Low-Noise Amplifiers: Theory and Demonstration

Shirin Montazeri, Student Member, IEEE, Wei-Ting Wong, Student Member, IEEE, Ahmet H. Coskun, Student Member, IEEE, and Joseph C. Bardin, Member, IEEE

Band= 1.8-3.6 GHz Pdis= 0.3 mW IBM BiCM<u>OS8</u>HP

InP Amplifiers

Gain and Noise

—Noise [K] 200μW—Noise [K] 380μW—Noise [K] 750μW

—Noise [K] 1.5mW —Noise [K] 6mW

Data by J. Schleeh, Low Noise Factory. ²⁷

Local Oscillator

- Amplifier-Multiplier chains at room temp (1W/pixel)
- Beam division in AMC
- LO source unit around 100GHz (1W/pixels)

16-pixel 1.9 THz lo system: STACKING

The LO module can be mounted with either two or four 1x4 pixel layers vertically stacked to form 8-pixels or 16-pixel configurations..

Power Consumption= 2.3 Watts/pixel or 1.25 Watts/pixel using W-band CMOS synthesizers

Jet Propulsion Laboratory California Institute of Technology X3X3X3 Architecture

Warm IF chain

UNIVERSITY OF

- For many channels WIFC using IC instead of individual components
 - built on one Complementary Metal-Oxide Semiconductor (CMOS) chip that is approximately 1.5mm x 1.5mm in size.

MPIfR dFFTS4G spectrometer

Max-Planck-Institut für Radioastronomie

Photo: dFFTS4G spectrometer crate

Technical data of a dFFTS4G board:

- Input bandwidth: 2 x 4 GHz (0 4 GHz)
- Spectral channels: 2 x 64k
- Spectral resolution: 71 kHz (ENBW)
- Power consumption: max. 70 W (~9 W / GHz)

Photo: dFFTS4G spectrometer board

Technical specifications of a dFFTS4G 19" crate :

Total bandwidth: $8 \times 2 \times 4 \text{ GHz} = 64 \text{ GHz}$

→

Spectral channels: 8 x 2 x 64k = 1 Million (1024k)

Bernd Klein, 2018

	Demonstrated CMOS Spectrometer System	
Design Parameter	Spectrochip SVII Spectrometer (UCLA/JPL) 2017 [3]	Spectrochip SVIII Spectrometer (UCLA/JPL) Available Late 2018
Processor Bandwidth (MHz)	3000	6000
Channel Count (#)	4096	8192
FFT Window Type	Hanning	PFB
FFT Format	Real	Real
Bit Resolution (#)	3	3
Power (W)	1.75 W	1.65 W
Size (cm ³)	10x8x2 cm	6x8x2 cm
Packaging Technique	Ribbon-Bond	Flip Chip
Weight (Kg)	0.12 Kg	0.12 Kg
Core Technology	65nm CMOS	28nm HPC CMOS

					NASA		
Subsystem Description	^{trl} N≤4	trl N>4	Heritage		Comments		
Multiplied LO, f <2THz	9	5	HERSCHEL, MIRO, STO-2, SOFIA, JUICE(SWI)	CMOS power	synthesizer for reduced power; higher output for N>4; compact assembly		
Multiplied LO, f>2 THz	6	4	HERSCHEL, STO-2, SOFIA	Higheı higher	r power handling capability for lower stages; output power; CMOS synth; GaN amps		
HEB mixers	7/8	4	HERSCHEL, SOFIA, STO-2	Compact arrays; efficient IF extraction; balanced designs			
SIS mixers	8/9	5	HERSCHEL	Compact arrays with efficient IF extraction			
IF LNAs	9	4	HERSCHEL	InP teo techno	chnology mature; need to advance SiGe plogy with lower DC power		
Backend	9	4	STO-2, SOFIA	FPGA systems are mature, however, need ASIC based solutions for large arrays			
Calibration	9	8	HERSCHEL, SOFIA, STO-2				
Bias electronics	9	5	HERSCHEL	Low p	ower electronics, 5 if multiplexing is needed		
Optical	9	8	HERSCHEL		Need TRL 5 by 2025 ->		
ICU	9	7	Herschel		Detector Roadmap Workshop		
Tip/Tilt mechanis	8	8	Herschel (one axis)		33		

HERO - optics

澂

ÿ

Little HERO on OST 2

Summary (little) HERO

- New generation heterodyne array receiver
 - Builds on HIFI/Herschel, (up)GREAT, ALMA
 experience but surpasses it
- 2x9 pixels in 4 bands
- Frequency coverage: 486 2700 GHz
- Easily feasible, high TRL design

Millimetron Heterodyne Instrument for the Far-Infrared (MHIFI)

Bands: Red Priority-1; Grey, Possible Bands depending on science cases

Initial design based on Herschel HIFI

Band	Frequency (GHz/THz)	IFBW (GHz)/ Technology	Polarization	Array size/ Configuration
M1	485 – 600	4-12 /(SIS)	H/V	3/Triangular
M2	752 – 950	4-12 /(SIS)	H/V	3/Triangular
M3	0.95 – 1.15	4-12 /(SIS)	H/V	7/Hexagonal
M4	1.60 – 2.10	1-6 /(HEB)	H/V	7/Hexagonal
M5	2.45 - 3.00	1-6 /(HEB)	H/V	7/Hexagonal
M6	4.77 – 5.8	1-6 /(HEB)	H/V	7/Hexagonal
Post-cryo band	500-600 1.05-1.15	4 - 12 (Schottky)	H/V	Schottky diodes

Turbulence in the ISM

ISM feeding as main driver of interstellar turbulence?

- Colliding flows unavoidably create turbulence
 - Mach-number of infall?
 - Impact relative to Galactic shear?
- Flows always chemically unstable
 - CO-dark material tracers

Colliding-flow simulation (column density map)

Klessen & Hennebelle (2010)

Spectral Line Mapping

Observing modes

- 2 (linear) polarizations (pol. measurements possible)
- Focal Plan Arrays
 - with n pixels,
 - square arrays,
 - Separation two FWHM beams
 - 1 pixel 2SB (for calibration), n-1 pixels DSB
- 130 backend readouts,
 - can cover 2 bands/ dual frequency
 - Resolution configurable up to 10^7
- Calibration standard: internal hot/cold/pol,
- Sky chop (up to 3') or selected off,
- Stare, dither, On-the-fly,

HERO's Fact Sheet

- Around 63μm, and 111 641μm
- 32 to 128 spatial pixels, each with ~8000 specral channels
- Resolution: up to $\Delta\lambda/\lambda = 10^7$

Col.	2	3	4	5	6	7	8	9	10	11	12	13	14
Band	vmin	vmin	λmax	λmin	Max Δλ/λ	IF BW2	Mixer	# pixels	# pixels	Trx	Beam s	T _{rms} (mK)	Line Flux
								Fall-		К	arc	in 1h at $\lambda/\Delta\lambda$	W/m ² at 5σ , 10^6 res
	(GHz)	(GHz)	(µm)	(µm)		km/s	Туре	back	Goal	(DSB)	sec	=10 ⁶	9m tel. 1h
1	468	648	641	463	10 ⁷	4301	SIS	2x4	2x16	40	15.2	2.0	2.1 E-21
2	648	900	463	333	10 ⁷	3101	SIS	2x4	2x16	80	10.9	3.4	4.9 E-21
3	900	1260	333	238	10 ⁷	2222	HEB	2x4	<mark>2x</mark> 64	110	7.9	3.9	7.9 E-21
4	1242	1836	241	163	10 ⁷	1559	HEB	2x4	<mark>2x6</mark> 4	200	5.6	6.0	1.7 E-20
5	1836	2700	163	111	10 ⁷	1058	HEB	2x4	2x6 4	300	3.8	7.4	3.1 E-20
6	4536	4752	66	63	10 ⁷	517	HEB	2x4	2x64	500	1.8	8.6	7.5 E-20

14 Receiver noise for 1h integration at 10^6 resolution (0.3 km/s) using one polarization.

15 Detectable point source line flux at 5 sigma, for 1h pointed integration (on+off source) in two polarization, 45 with a 5.9 m primary mirror (app eff. 0.9) as designed for OST Concept 1.

Instrument Performance

Instrument Performance

HERO sensitivity comparison

Instrument

Heterodyne focal plane array with wide frequency coverage

- R = 10^5 to 10^7
- 468 2700 GHz,
 4.7 THz
- 8 GHz IF
- 2x16 SIS, 2x64 HEB

Summary HERO

- New era large heterodyne array receiver
- Builds on HIFI/Herschel, (up)GREAT, ALMA experience + recent R&D + innovative approach → largely surpasses current het. receivers
- In pixels: Up to 2x64 channels
- Frequency coverage: 468 2700 GHz, and 4.7 THz
- Feasible, high TRL design

Imaging heterodyne Spectrometers

Working imaging heterodyne Spectrometers:

- Up-GREAT 7 x 2 pixels 1.9 2.5 THz, 4.7 THz
- STO2 : 4 @ 1.4, 4 @ 1.9, 1@ 4.7 THz
- SMART: 2 x 8 pixels between 460 and 880 GHz
- Harp B: 4x4 SIS mixers at 350 GHz
- Champ+: 7 pixels @ 620 to 720 GHz, spacing ~2.15.0mb and 7 pixels @ 780 to 950 GHz
- Supercam: 8 x 8 pixels at 350 GHz

Under construction or designed:

- Gusto: 8 pixels @ 1.4, 1.9 and 4.7 THz
- Chai: 64 pixels @ 650 and 810 GHz
- IRAM: 49 pixels
- AtLAST 100s of pixels
- •

See also Workshop in Nunspeet March 2017

Overview

Graf et al. 2015 J. of Infrared Milli THz Waves

Conclusion

Science Cases for Heterodyne in Space:

- The trail of Water
- Cosmic Rays
- Evolved Stars
- Turbulence in the ISM

Imaging heterodyne spectrometers:

- Have been build for ground, airplane and balloon
- We are ready for the first in space!

