Observations of planets and their satellites with Millimetron

Paul Hartogh¹

¹Max Planck Institute for Solar System Research Justus-von-Liebig-Weg 3 37077 Göttingen Germany

Outline

- Mars
- Outer planets
- Titan
- Galilean satellites

Water vapour on Mars

- Very important source gas for atmospheric chemistry
- Maximum column density around Northern summer (more water ice at North pole)
- Maximum vertical extension believed to be during southern summer (nearer to sun, warmer, different meridional circulation).
- Only recently vertical profiles from satellites (TGO) constraining the variable hygropause!
- Ls coverage of vertical profile very important for understanding a number of phenomena in the Martian atmosphere.

HIFI Mars CO observations

- Observations done during $\text{Ls} = 78^{\circ}$ (2010)
- Dedicated CO isotopic line observations
- Strong emission feature from morning side

Before and after (Lomb periodogram)

Mars Surface Temperature during Northern Spring

Apr 10 2010 00:00:00 UT $Ls = 75.3$

Retrieved temperature profile and 980 ppm constant with altitude CO volume mixing ratio

Isotopic ratios derived from CO isotopologues are telluric! Deviations are < 5%.

Temperature profile retrieved with all CO and water lines confirms the one derived before

Millimetron Science Workshop, Paris, 9-11 September 2019 9

Earth hygropause (25-60º lat.)

Martian seasons

MPI-MGCM simulation of water cycle

Shaposhnikov et al., JGR 2017 Science Workshop, Paris, 9-11 September 2019
 Shaposhnikov et al., JGR 2017 *Hartogh et al., JGR 2005*

New mechanism transporting H2O through cold trap into the thermosphere during southern summer

Shaposhnikov et al. JGR, 2019 ("water pump paper")

HIFI: only northern summer observations

- HIFI failure
- Loss of Ls 270-330 observations
- Only small Ls coverage around northern winter (hygropause level \sim 16 km)
- Confirmation of low hygropause level ~ 16 km
- Compared to satellite obs high sensitivity below 15 km (not sensitive to dust)

HIFI: Oxygen Isotopes on Mars

- Consistent from CO and H_2O
- Seem to be telluric
- Difficult to derive fractionations < 5 %
- Required improvements:
	- $-$ precise flux calibration $<$ 3 $\%$
	- –minimized baseline ripples

$H₂O$ and HDO (4.5 x VSMOW) at $Ls = 78^{\circ}$

Vertical profile of water at $Ls = 78^{\circ}$

Millimetron Science Workshop, Paris, 9-11 September 2019 18

$H₂O$ and HDO (4.6 x VSMOW) at $Ls = 110^{\circ}$

Millimetron Science Workshop, Paris, 9-11 September 2019 19

Vertical profile of water at $Ls = 110^{\circ}$

Millimetron Science Workshop, Paris, 9-11 September 2019 20

Rapid upward transport of water vapour during a dust storm, polar latitudes

Vandaele et al, Nature 2019

Millimetron Science Workshop, Paris, 9-11 September 2019 22

D/H with TGO (ACS and NOMAD)

HIFI results and MHIFI prospectives on water cycle

- HIFI failure
- Lost of important observations
- Only small Ls coverage around northern winter (hygropause level \sim 12 km)
- No observations around southern summer

• **MHIFI: Full Ls coverage**

Upper limits on HCl and H_2O_2

What about HCl and H_2O_2 ?

- HCI volcanic gas. Detection would constrain volcanic outgassing. Potential important also for destruction of methane (M. Mumma's work)
- H_2O_2 important constraint for hydrogen / oxygen photochemistry on Mars.
- H_2O_2 snow believed to kill all live on martian surface. Produced in eletrostatic discharge reaction during dust storms. (see Sushil Artreya's work)

Model abundances of H_2O_2

Krasnopolsky 2009, Icarus

Fall 2011: detection of $H_2O_2!$ Ls=10°

Millimetron Science Workshop, Paris, 9-11 September 2019 28

HIFI & MHIFI relative sensitivities

Table 1: DSB without calibration. SNR=100, Δf = 1 MHz, 70 K line amplitude

Sensitivities and integration times HIFI & MHIFI

HIFI -> MHIFI $(H₂O₂)$

- HIFI: 5-sigma detection after 1 hour integration time (Mars diameter ~ 10 arcsec)
- MHIFI: > 50 sigma after 1 h integration time will constrain the vertical profile
- Efficiency up to > 30 times better for smaller Mars diameters (e.g. at 5 arcsec), integration times about 1000 times shorter
- Reason: spatial resolution and improved receiver temperatures at higher frequencies

Molecular oxygen on Mars

- First and last observation in visible range (oxygen A bands) in 1972!
- No observational constraint about the vertical profile!
- Believed to be uniformly mixed like on Earth
- Believed to be produced by photolysis of $CO₂$ and H_2O .
- If high enough on ground it can be used for rocket propulsion and astronaut supply.

First submm detection of $O₂$

Non-constant profile provides better fit

index of data point

Non-constant vertical profile?

- Photochemical lifetime expected to be 8 years
- Mixing time in lower atm about 2 weeks
- Should be well mixed (constant VMR) through the whole atmosphere until homopause
- Deviation from constant with altitude VMR points to smaller photochemial lifetime
- Similar problem found by ChemCam: while atm pressure varies by < 20 %, O_2 changes by >100 %.

Fits for LS 12, 47, 77, 114

Millimetron Science Workshop, Paris, 9-11 September 2019 36
Semi-annual variability assuming constant VMR O²

Millimetron Science Workshop, Paris, 9-11 September 2019 37

VMR vs surface pressure

• ChemCam:

- $-$ 2100 ppm/700 ppm = 3.0
- $-$ 8.8 hPa/7.75 hPa $= 1.14$
- **Variation 2.6 times larger than expected for super volatiles**

• SAM QMS:

- -1600 ppm/950 ppm = 1.68
- $-$ 9.0 hPa/7.75 hPa = 1.16
- **Variation 1.45 times larger than expected for super volatiles**
- Herschel HIFI:
	- $-$ 2100 ppm/1400 ppm = 1.5
	- $-$ 8.9 hPa/7.75 hPa = 1.15
	- **Variation 1.30 times larger than expected for super volatiles**

CO and O_2 spectra comparison

Discussion

- All 3 instruments show larger variations than expected from O_2 as supervolatile (- Δp)
- HIFI shows smaller variations than CC and QMS
- If true, O_2 is not as well mixed as assumed
- Vertical profiles not shown here, because very sensitive on temperature profiles, derived from CO lines and related baseline ripples
- Comparison of CO and $O₂$ spectra however indicate deviation from constant vertical profile at Ls
- **Important for MHIFI: sideband separation mixers or other measure to make sure having small baseline ripples on continuum sources.**

Line Survey

Millimetron Science Workshop, Paris, 9-11 September 2019 41

Mars H LSB 1342194492 band 1a (485.00 - 490.00 GHz)

Mars H LSB 1342194492 band 1a (490.00 - 495.00 GHz)

Millimetron Science Workshop, Paris, 9-11 September 2019 44

Mars V USB 1342194492 band 1a (545.00 - 550.00 GHz)

Mars H LSB 1342194496 band 1b (575.00 - 580.00 GHz)

Mars H LSB 1342194496 band 1b (620.00 - 625.00 GHz)

Mars H LSB 1342194545 band 2a (660.00 - 665.00 GHz)

Mars H LSB 1342194545 band 2a (690.00 - 695.00 GHz)

Mars H LSB 1342194685 band 2b (750.00 - 755.00 GHz)

Millimetron Science Workshop, Paris, 9-11 September 2019 51

Mars H LSB 1342194685 band 2b (770.00 - 775.00 GHz)

Mars H USB 1342194685 band 2b (745.00 - 750.00 GHz)

 1.20 1.10 1.00 signal/continuum 0.90 model 1342194685_WBS-H-USB_18 0.80 H2O_162 1342194685_WBS-H-USB_19 1342194685_WBS-H-USB_21 H2O_161 1342194685_WBS-H-USB_22 0.70 0.60 0.50
750.00 754.00 755.00 751.00 752.00 753.00

Mars H USB 1342194685 band 2b (750.00 - 755.00 GHz)

Mars H LSB 1342194492 band 1a (480.00 - 485.00 GHz)

Mars V LSB 1342194492 band 1a (480.00 - 485.00 GHz)

Mars H LSB 1342194492 band 1a (495.00 - 500.00 GHz)

Mars V LSB 1342194492 band 1a (495.00 - 500.00 GHz)

MHIFI

- High SNR (100-300) observations of $O₂$
- Mapping observations at high frequencies and/or during opposition or in general times of large apparent diameters of Mars
- MHIFI line surveys: at least one order of magnitude better SNRs

Main belt comets

• Does the gas drag of water lift dust particles and create the observed dust tails of MBC?

P/2012 T1 (Panstarrs) 176P/LINEAR

Millimetron Science Workshop, Paris, 9-11 September 2019 58

Production rates from HIFI obs: < 2 kg/s **MHIFI: < 0.2 kg/s**

de Val-Borro et al, A&A 2012 O`Rourke et. al, APJL 2013

HIFI detected water in CERES!

Production rate about 6 kg/s **MHIFI: 0.6 kg/s**

Küppers et al., Nature 2014
60 Küppers et al., Millimetron Science Workshop, Paris, 9-11 September 2019

ALMA

- Recently a number of line detections around asteroids and Galilean satellites were reported on conferences (e.g. AOGS 2019).
- The results are mostly not published yet, but are rather amazing, because in any case the detections represent very highly excited lines, e.g. O_3 32_{3.29} – 32_{3.30} or J=26-25 NaCl and J= 44-43 KCl in the atmosphere of Ceres and similar highly excited lines of SO₂, SO¹⁸O, SO¹⁷O, ³³SO₂, ³⁴SO₂, S¹⁸O, NaCl in the atmosphere of Europa. Proposals detecting highly excited water lines were successful (e.g. Callisto). The appearance of these lines is not compatible with present state-of-the art non-lte radiative transfer codes.

Source of water in Jupiter's stratosphere?

- Stratospheric water discovered by ISO
- Must be of external origin, due to tropopause cold trap
- Three potential sources were identified:
	- Interplanetary dust particles (IDP)
	- Moons and rings
	- Cometary impacts (e.g. SL9)
- Leave different fingerprints that can be read by measuring the 3-d water distribution

Example: IDP vs SL9

Pressure [mbar]

Millimetron Science Workshop, Paris, 9-11 September 2019 63

HIFI (1670 GHz) mapping observations

Millimetron Science Workshop, Paris, 9-11 September 2019 64

Simulated spectra of IDP and SL9 vertical profiles

IDP profiles result in too broad lines SLP profiles fit very good

SL9 impacts 1994 (VIS/IR) at 44 S

Credits: NASA-HST/ U. Hawaii

Millimetron Science Workshop, Paris, 9-11 September 2019 66

Water distribution observed by PACS

SL9 impact main source of stratospheric water in Jupiter

- No feature found indicating a satellite/ring source
- Vertical distribution does not fit IDP source
- Horizontal distribution of water favors SL9 impact, hemispheric asymmetry: Globally averaged column density $3x10^{15}$ cm⁻² with 2-3 times more water in the south.

Cavalie et al., A&A 2013

Jupiter Millimetron

- Coherent maps (vertical profiles) with at least 10 times more pixels and/or maps of different water lines (sideband separation mixers desired)
- Monitoring of horizontal and vertical water distribution
- Water isotopologues

Vertical temperature profiles in the visible part of the four outer planets. The main composition and altitude of the main clouds are indicated. Center and Right: Altitude location and densities of the main clouds in Jupiter and Saturn as calculated from thermochemical models. (Sanchez-Lavega et al. 2004).

Millimetron Science Workshop, Paris, 9-11 September 2019

Unexpected detection at 557 GHz pointing to Saturn

Enceladus plumes

Modeled water number densities in the torus

Conclusions Enceladus water torus

- Extension about 10 Saturn radii (R_s)
- Highest density around a distance of 4 R_s
- Thickness about 50000 km
- About 3 % of the water produced by Enceladus rains into the upper atmosphere of Saturn
- Enceladus is the source of stratospheric water in Saturn

Hartogh et al, A&A 2011

MHIFI: monitoring water torus

- Next opportunity in absorption between 2023 and 2026
- Monitoring in emission in principal also possible
- Higher spatial resolution
- Activity monitoring of Enceladus

D/H ratio in the solar system

Hartogh et al., Nature 2011

77

77

Situation 2019

More precise D/H values in Uranus and Neptune

Another data analysis of D/H in Halley

Four additional OCC D/H measurements, smallest and largest values ever

Three more JFC D/H measurements, one large value (67P, in-situ), two Hartley 2 like ones (observed with HIFI and GREAT, both by *Darek Lis et al. (APJL 2013 and A&A 2019)*

D/H in Uranus and Neptune

- D/H in Jupiter and Saturn protosolar, i.e. main component is hydrogen
- D/H Uranus and Neptune substantially higher => equilibrated water and possibly organic molecules (highly D-enriched in interstellar medium): "Ice giants"
- D/H in hydrogen may be used to constrain the D-enrichment of ices or the amount of ices for a given D/H.

The internal structure of the ice giants

1. Upper atmosphere, top clouds 2. Atmosphere consisting of hydrogen, helium and methane gas 3. Mantle consisting of water, ammonia and methane ices 4. Core consisting of rock (silicates and nickel-iron

PACS HD-spectra of Uranus and Neptune

Result D/H

- PACS values show the same D/H for both planets
- PACS values smaller than ISO values:
	- Neptune: 41±4 ppm (65 ppm)
	- Uranus: 44±4 ppm (55 ppm)
- Formation models (e.g. Podolak, 1995) predict 70-100 % ice and a rather small amounts of rocky (SiO₂) material. Based on these models the very low (64 ppm) D/H of ices are derived.
- Assuming cometary (150-300 ppm) isotopic ratios we get an ice mass fraction of only 14-32 %, meaning that the planets are rock-dominated.

(Feuchgruber et al., A&A 2013)

MHIFI

- Heterodyne observations o HD in all outer planets
- Vertical profiles of HD in all outer planets
- D/H in water

Model fitted to observation (zoomed)

Retrieved mole fractions and isotopic ratios

Courtin et al. A&A, 2011

PACS Titan spectrum and fitted model

CO: is CO primordial or external ? Viable via precipitation of O or O⁺ from Enceladus Torus (*Hörst 2008; Cassidy & Johnson 2010; Hartogh et al. 2011*)

Consistent with previous studies:

For the [60-170] km range altitude

Isotopic ratios ¹³C/¹²C in CO and HCN

Detection of the isotopes: \cdot ¹³CO(15-14) and (16-15) \triangleright H¹³CN (19-18) and (20-19) but marginal

> Results: 12C/13C in CO: 124 ± 66 $12C/13C$ in HCN: 66 ± 33

Consistent with previous works

Wavelength [uMM] metron Science Workshop, Paris, 9-11 September 2019
Rengel et al. 2012, subm

Rengel et al. 2013, submitted

Titan water with PACS and HIFI

Comparison of best fit profile with former results

Millimetron

- Deep searches for new species with SACS and LACS
- SNR > 100 observations of water and other species for vertical profiles (MHIFI efficiency better by factor of 25 at 1 THz)

2007: Marconi model on Ganymede

Ganymede in the Jovian System:

Observations indicate that Ganymede has a significant O² atmosphere, probably a subsurface ocean, and is the only satellite with its own magnetosphere.

Figure 19.12. Ganymede auroral emission from oxygen $(OI 1356 A)$ observed with HST .

Images of Ganymede's OI 135.6 nm emission for HST orbits on 1998 October 30 W**N**
Millimetron Science Workshop, Paris, 9-
11 September 2019

Schematic picture of processes creating the Ganymede atmosphere

Ganymede's water atmosphere

- Production processes of water are sputtering of heavy ions and electrons from the Jupiter co-rotating plasma and sublimation. The sublimation dominates 45 deg around the sub-solar point and while sputtering elsewhere. Sublimation produces a 3 orders of magnitude higher water vapour density than sputtering.
- Sublimation rates depend on types of ices: crystalline vs amorphous, impurities by different minerals/salts, ice-regolith mixtures
- HIFI detected a water atmosphere at the leading sides of Ganymede and Callisto

Cryovolcanism like on Enceladus?

On leading sides by chance?

Summary Galilean Satellites

- First detection of predicted water atmosphere of Ganymede and Callisto.
- Properties of atmospheres different from predictions and not easy to understand
- Detected strong asymmetry may be an expression of strong local variations of temperatures or ice properites.
- Cryovolcanism cannot be excluded as potential atmospheric source.

Millimetron

- Observations of water vapour of all Galilean satellites
- Observations of several lines constraining the atmospheric structure
- Observations of the diurnal variation of the water atmosphere